
Builtin dict & **kwargs
preserve some order

☝ Python* 3.6+
* The C based Python 3.6+ reference implementation and PyPy 4+ just do it, and so can {{YourOtherImplementation}} !

© 2017 by Stefan (dilettant) Hagen under MIT License 1

https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://www.python.org/downloads/release/python-362/
https://morepypy.blogspot.nl/2015/01/faster-more-memory-efficient-and-more.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

Stacks and Queues

— Real world 'printed' dictionaries expose sorted keys

— Topic of talk is stable ordering and (not sorting)

— Focus is on observable behavior of keys (and sets)

— Iff key order preserved (by underlying hash mapping),

 then thoughtful creation of a dict say d may allow:

— Queue: for k in d.keys(): # !

— Stack: for k in reversed(tuple(d)): # !
© 2017 by Stefan (dilettant) Hagen under MIT License 2

https://en.wikipedia.org/wiki/Stack_(abstract_data_type%29
https://en.wikipedia.org/wiki/Queue_(abstract_data_type%29
https://pypi.python.org/pypi/sortedcontainers/
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Conditional_(computer_programming%29
https://en.wikipedia.org/wiki/Queue_(abstract_data_type%29
https://en.wikipedia.org/wiki/Stack_(abstract_data_type%29
https://stefan-hagen.website/
https://shagen.mit-license.org/

Proverbs / Common sense facts we learn when growing up

OK, carved into brains (know the fetters of your mind):

☝ You can't have your cake and eat it !!

— Educational Person a.k.a. LifeTM

Now is this what you wanted? Like: ☝ Two for one !!

of the "Local Brain Sales Rep." ... or another variant of:
" blocking our views through artificial rules?
© 2017 by Stefan (dilettant) Hagen under MIT License 3

https://en.wikipedia.org/wiki/Proverb
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/You_can%27t_have_your_cake_and_eat_it
https://en.wikipedia.org/wiki/Buy_one,_get_one_free
https://stefan-hagen.website/
https://shagen.mit-license.org/

First Learn, Second Follow, Third "(Reverse) Learn" !"#

Common sense facts: Base of Culture or only Hear Say?
! One such fact learned the hard way by most of us is:

The native Python dict does not preserve insert order.

Python 3.6+ builtin hash maps preserve insert order!
☝ ... dict, set and **kwargs (PEP 468 implemented).

PEP 468 ⇒ "Preserving the order of **kwargs in a
function" ! so, we now can have our cake and eat it too?
© 2017 by Stefan (dilettant) Hagen under MIT License 4

https://en.wikipedia.org/wiki/Reverse_learning
https://stackoverflow.com/questions/613183/sort-a-python-dictionary-by-value/
https://sdrees.gitbooks.io/python-order-is-now-key/content/first-question.html
https://www.python.org/dev/peps/pep-0468/
https://www.python.org/dev/peps/pep-0468/
https://stefan-hagen.website/
https://shagen.mit-license.org/

Question: PEP 468: "**kwargs order" - Rely on it or not?

— Yes! Use cases (from PEP 468):

— print out key:value pairs in CLI output

— map semantic names to column order in a CSV

— serialise attributes and elements in particular
orders in XML

— serialise map keys in particular orders in human
readable formats like JSON and YAML.

© 2017 by Stefan (dilettant) Hagen under MIT License 5

https://www.python.org/dev/peps/pep-0468/
https://mail.python.org/pipermail/python-dev/2016-September/146329.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

Question: New dict implementation - Rely on it or not?

— The dict type now uses "compact" representation [...]

— Memory usage between 20% - 25% smaller ⪻ v3.5

— The order-preserving aspect [...] considered an
implementation detail and should not be relied ...

— This may change in the future, but it is desired [...]
a few releases before changing the language spec
to mandate order-preserving semantics for all
current and future Python implementations [...] .

© 2017 by Stefan (dilettant) Hagen under MIT License 6

https://docs.python.org/3.6/whatsnew/3.6.html#new-dict-implementation
http://bugs.python.org/issue27350
https://docs.python.org/3.5/whatsnew/3.5.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

(1/7) ! Explore the good news and our bright future

Short interactive session - you're free to ignore !:

Python 3.6.2 (default, Jul 17 2017, 16:44:47)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> d = {'foo': 1, 'bar': 2, 'baz': 3}
>>> for k, v in d.items():
... print(k, "->", v)

For now an implementation detail ;-)
foo -> 1
bar -> 2
baz -> 3

© 2017 by Stefan (dilettant) Hagen under MIT License 7

https://docs.python.org/3.6/whatsnew/3.6.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

(2/7) Update a key's value

Iteration shows, value update preserves key position:

>>> d['foo'] = 42
>>> for k, v in d.items():
... print(k, "->", v)

foo -> 42
bar -> 2
baz -> 3

© 2017 by Stefan (dilettant) Hagen under MIT License 8

https://docs.python.org/3.6/library/stdtypes.html#dict
https://stefan-hagen.website/
https://shagen.mit-license.org/

(3/7) Delete the key (position now taken from next!)

>>> del d['foo']
>>> for k, v in d.items():
... print(k, "->", v)

bar -> 2
baz -> 3

© 2017 by Stefan (dilettant) Hagen under MIT License 9

https://docs.python.org/3.6/library/stdtypes.html#dict
https://stefan-hagen.website/
https://shagen.mit-license.org/

(4/7) "Re-Insert" (kind of) removed key with some value

>>> d['foo'] = -1

But now 'foo: -1' is appended (insert order!), so:

>>> for k, v in d.items():
... print(k, "->", v)

bar -> 2
baz -> 3
foo -> -1

© 2017 by Stefan (dilettant) Hagen under MIT License 10

https://docs.python.org/3.6/library/stdtypes.html#dict
https://stefan-hagen.website/
https://shagen.mit-license.org/

(5/7) Short dirty check to show off PEP 468

>>> # Remember: **d ⟼ bar=2, baz=3, foo=-1
>>> print(**d) # HACK A DID ACK

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'bar' is an invalid keyword argument for this function
 ^^^

 ⇒ ☝ Order preserved; Python 2.7.13 on OS X raises:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'baz' is an invalid keyword argument for this function
 ^^^

© 2017 by Stefan (dilettant) Hagen under MIT License 11

https://www.python.org/dev/peps/pep-0468/
https://docs.python.org/2.7/whatsnew/2.7.html
https://stefan-hagen.website/
https://shagen.mit-license.org/

(6/7) Some other function exposing PEP 468 behavior

>>> def a_stack(pos, *args, **kwargs):
... """Now for something completely different ..."""
... for k in reversed(tuple(kwargs)::
... print(k, "->", kwargs[k])
...
>>> # Remember: **d ⟼ bar=2, baz=3, foo=-1
>>> a_stack(True, **d)

foo -> -1
baz -> 3
bar -> 2

© 2017 by Stefan (dilettant) Hagen under MIT License 12

https://www.python.org/dev/peps/pep-0468/
https://stefan-hagen.website/
https://shagen.mit-license.org/

(7/7) The builtin set now also preserves order

>>> # Remember: **d ⟼ bar=2, baz=3, foo=-1
>>> s = set(d.keys()) # Using set constructor
>>> print(tuple(s))

('bar', 'baz', 'foo') # Also an implementation detail ;-)

>>> s = {'bar', 'baz', 'foo'} # Fresh set literal
>>> print(tuple(s))

('bar', 'baz', 'foo') # Dito implementation detail ;-)

© 2017 by Stefan (dilettant) Hagen under MIT License 13

https://docs.python.org/3.6/library/stdtypes.html#set
https://stefan-hagen.website/
https://shagen.mit-license.org/

What gives?
... still not clear what this means,

but will notice - as time goes by ...

Any questions?
Thoughts?
 -- Thanks!
© 2017 by Stefan (dilettant) Hagen under MIT License 14

https://stackoverflow.com/questions/613183/sort-a-python-dictionary-by-value/39424969#39424969
https://stefan-hagen.website/
https://shagen.mit-license.org/

